Nuclear localization of human SOD1 and mutant SOD1-specific disruption of survival motor neuron protein complex in transgenic amyotrophic lateral sclerosis mice.

نویسندگان

  • Barry Gertz
  • Margaret Wong
  • Lee J Martin
چکیده

Amyotrophic lateral sclerosis (ALS) is a fatal adult-onset neurodegenerative disease that causes degeneration of motor neurons and paralysis. Approximately 20% of familial ALS cases have been linked to mutations in the copper/zinc superoxide dismutase (SOD1) gene, but it is unclear how mutations in the protein result in motor neuron degeneration. Transgenic (tg) mice expressing mutated forms of human SOD1 (hSOD1) develop clinical and pathological features similar to those of ALS. We used tg mice expressing hSOD1-G93A, hSOD1-G37R, and hSOD1-wild-type to investigate a new subcellular pathology involving mutant hSOD1 protein prominently localizing to the nuclear compartment and disruption of the architecture of nuclear gems. We developed methods for extracting relatively pure cell nucleus fractions from mouse CNS tissues and demonstrate a low nuclear presence of endogenous SOD1 in mouse brain and spinal cord, but prominent nuclear accumulation of hSOD1-G93A, -G37R, and -wild-type in tg mice. The hSOD1 concentrated in the nuclei of spinal cord cells, particularly motor neurons, at a young age. The survival motor neuron protein (SMN) complex is disrupted in motor neuron nuclei before disease onset in hSOD1-G93A and -G37R mice; age-matched hSOD1-wild-type mice did not show SMN disruption despite a nuclear presence. Our data suggest new mechanisms involving hSOD1 accumulation in the cell nucleus and mutant hSOD1-specific perturbations in SMN localization with disruption of the nuclear SMN complex in ALS mice and suggest an overlap of pathogenic mechanisms with spinal muscular atrophy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice

Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduc...

متن کامل

Heat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...

متن کامل

Heat shock protein 70 protects motor neuronal cells expressing mutant Cu/Zn superoxide dismutase (SOD1) against altered calcium homeostasis

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the progressive loss of motor neurons leading to paralysis and death. Mutations of the human Cu/Zn superoxide dismutase (SOD1) are found in some cases of familial ALS (fALS). Recent evidences suggest the accumulation of intracellular calcium is one of the primary mechanisms of motor neuronal degeneration. In th...

متن کامل

Molecular Chaperone Mediated Late-Stage Neuroprotection in the SOD1G93A Mouse Model of Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by the selective loss of motor neurons in the spinal cord, brain stem, and motor cortex. Mutations in superoxide dismutase (SOD1) are associated with familial ALS and lead to SOD1 protein misfolding and aggregation. Here we show that the molecular chaperone, HSJ1 (DNAJB2), mutations in which cause distal her...

متن کامل

Mutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis

Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neuropathology and experimental neurology

دوره 71 2  شماره 

صفحات  -

تاریخ انتشار 2012